سفارش تبلیغ
صبا ویژن

 

اندازه گیری مصرف سوخت
اندازه گیری مصرف سوخت

 

ترجمه و نوشته: مهندس کیوان بنی هاشمی




 
داستان موتورهای درون سوز و محفظه احتراق یک داستان طولانی با تاریخچه ای قابل ملاحظه است و آن را باید چیزی بیش از علم دانست به طوری که نوعی مهندسی و حتّی قدری چاشنی تخیل علمی در آن دیده می شود و مطالب و مقالات زیادی در این مورد به رشته تحریر درآمده است. در این مقاله به بررسی ظهور و تحوّل تکنولوژی در این مورد و ابعاد مختلف آن می پردازیم.

چالش: مخلوط کردن هوا و سوخت

ابتدا از اصول پایه ای مخلوط کردن هوا و سوخت به منظور تولید نیرو آغاز می کنیم. آنچه که «رودلف دیزل» در مورد موتورهای دیزلی ابداع کرد که مخلوط سوخت در اثر فشرده شدن مشتعل می گردد چیزی کاملاً متفاوت است که در ادامه مقاله به صورت مختصر به آن خواهیم پرداخت و آن تکنولوژی مورد استفاده در پیشرانه های دیزلی است. بعضاً به نسبت هایی مانند 14/7 به یک برخورد می کنیم که نشان دهنده نسبت و میزان جرم هوایی است که با جرم بنزین مخلوط می گردد و به آن ضریب استوکیومتری (Stoichiometric Ratio) می گویند که این به معنای آن است که 14/7 پاوند هوا مورد نیاز است تا یک پاوند سوخت مشتعل شود بدون آنکه بخشی از بنزین مشتعل نشده باقی بماند. مهندسین واژه دیگری را نیز برای آن در نظر گرفته و تعریف کرده اند که به آن فاکتور هوای اضافی (Excess-Air Factor) یا 8 می گویند. اگر 8 بزرگ تر از یک باشد به معنای وجود مخلوط سوخت رقیق بوده (هوای اضافی) و چنانچه 8 کمتر از یک باشد به آن مخلوط غلیظ می گویند و چنانچه 1=8 باشد به آن استوکیومتریک می گویند. اهمیت این موارد در تأثیر 8 در توانایی و قدرت مخلوط سوخت و میزان مواد آلاینده ای است که بعد از عمل احتراق شکل می گیرند. این موارد آلاینده عبارتند از هیدروکربن های مشتعل نشده یا HC، منوکسید کربن (CO) و انواع اکسید ازت (NOX). جای تعجب نیست که هر چه مخلوط سوخت غلیظ تر باشد میزان تولید منوکسید کربن و هیدروکربن های مشتعل نشده یا HC آن بیشتراست چون مخلوط زیادی از سوخت وارد محفظه احتراق شده و بنابراین تعداد زیادی مواد آلاینده نیز از آن خارج می شود. چنانچه مخلوط سوخت بیش از حدّ رقیق باشد مقدار زیادی HC تولید می گردد که ناشی از عدم اشتعال مخلوط سوخت بوده و بنابراین آلایندگی به جای خود محفوظ خواهد بود. با وجود اینکه منوکسید کربن و هیدروکربن های مشتعل نشده دارای یک حداقل هستند که اندکی کمتر از حالت استوکیومتری بوده امّا این حالت وضعیت اکسیدهای ازت را بسیار تشدید می کند. چرا؟ دلیل آن است که بهترین احتراق که باید آن را داغ ترین احتراق نیز دانست متأسفانه با افزایش درجه حرارت میزان تولید انواع اکسید ازت تشدید می گردد. به همین دلیل برای کنترل و احیاناً کاهش میزان خروج انواع اکسید ازت از لوله اگزوز اتومبیل ها، آنها را مجدداً چرخش می دهند که به آن (EGR (Exhaust Gas Recirculation یا چرخش و گردش مجدد گازهای اگزوز می گویند. این کار باعث آلایندگی مخلوط هوا شده که نتیجه مستقیم آن، پایین آمدن راندمان احتراق و به دنبال آن پایین آمدن دمای ناشی از عمل احتراق است.
حال اگر به این عمل یک مبدل کاتالیتیکی سه راهه (منظور از سه راهه این است که می تواند نسبت به امحاء هر سه آلاینده هیدروکربن، منوکسید کربن و اکسید ازت اقدام کند) اضافه کنید می توان گفت سطح مواد آلاینده از لوله اگزوز به حداقل کاهش پیدا می کند. بهینه سازی عملیات احتراق نیازمند آن است که با انجام مانورهای لازم همواره مخلوط سوخت در وضعیت استوکیومتری قرار داشته باشد. مخلوط سوختی که در حال ورود به محفظه احتراق بوده توسط چندین حسگر اکسیژن که به آنها حسگرهای 8 نیز می گویند تحت کنترل قرار دارد که وظیفه آنها بو کشیدن جریان گازهای درون اگزوز قبل و بعد از عبور از مبدل کاتالیتیکی است. با توجه به اینکه تقاضا برای نیروی موتور بعضاً به صورت دائمی در حال تغییر است، لذا در فرآیند ورود مخلوط سوخت همواره میزان متغیری از سوخت و هوا وارد آن شده و یا از آن خارج می شود. به طور کلی حداکثر نیرو، زمانی به وجود می آید که ضریب استیوکیومتری اندکی غلیظ باشد و زمانی موتور دارای کارکرد اقتصادی است که مخلوط سوخت اندکی رقیق و پایین تر از استوکیومتری باشد.

دیدگاه های اولیه

اولین اقدامات در خصوص اندازه گیری میزان مصرف بنزین بدون برنامه مشخصی انجام گرفت. در سال های دهه 1880 و به خصوص سال های آخر آن چیزی که عمل مثلاً کاربراتور انجام می داد در واقع یک رشته از الیاف بود که بنزین را در خود جذب کرده و در اطراف آن مجرایی برای هوای ورودی قرارداشت. کاربراتورهای معروف به سطحی (Surface) باعث می گردیدند که هوا به صورت حباب وارد مخزن سوخت گردد و مجموعه آن را که در واقع بخار بود جمع آوری کرده و آن را به سوی محفظه احتراق هدایت کنند و این بسیار توأم با شانس بود که مخلوط هایی بین 8 تا 25 قسمت هوا و یک قسمت سوخت کلاً می توانست مشتعل شود اگرچه که به ندرت پیش می آید که اشتعال آن به خوبی انجام گیرد. اندکی بعد از آن یعنی در طی سال های دهه 1890 چندین محقق که در میان آنها «ویلهلم میباخ» (همان میباخ معروف) نیز وجود داشت اقدام به اسپری مستقیم سوخت از طریق یک منفذ کوچک به داخل جریان هوایی که به طرف سیلندر می رفت کردند. تلاش ها و اقدامات آنها همانند همکاران بعدی در واقع همان کاربراتورهای سنتی بودند که با استفاده از تأثیر ونتوری (Venturi Effect) کارآیی داشتند.
تأثیر ونتوری عبارت است از طول مسیر سوخت رسانی که با کم شدن قطر آن در ادامه مسیر انتقال باعث شدت یافتن جریان سوخت و هوا می گردد در حالی که فشار آن پایین می آید که به آن اصول برنولی (Bernoullis Principle) می گویند.
ضمناً بنزین در شرایط فشار محیطی می توانست به داخل جریان هوای ورودی به داخل سیلندر مکیده شود و این از مزایای اتمیزه شدن سوخت بود. این ایده همواره یک ایده اساسی و پایدار بوده و هست: کنترل نیروی موتورهای بنزین سوز از طریق تأمین میزان هوا و بدین ترتیب امکان اندازه گیری مصرف سوخت نیز به وجود می آید.

سخنی کوتاه در مورد دیزل و موتورهای دیزلی

در مقایسه با پیشرانه های بنزینی، انواع دیزلی مفهوم کاملاً متفاوتی داشته و اندازه گیری میزان مصرف گازوئیل نیز متفاوت است. اگر به اختصار بخواهیم به آن اشاره کنیم باید بگوییم یک موتور دیزلی دارای حرکتی است که برای انجام آن نیازی به باز و بسته کردن چیزی به نام گاز (Throttle) نیست. در این موتورها صرفاً از طریق تزریق گازوئیل می توان میزان نیروی تولیدی را تعیین کرد و میزان مخلوط هوا و گازوئیل در موتورهای دیزلی در مقایسه با انواع بنزینی بسیار گسترده تر است.
همانطور که می دانید در پیشرانه های دیزلی از شمع و جرقه آن خبری نیست و به جای آن احتراق مخلوط سوخت تزریق شده به داخل محفظه از طریق افزایش دمای هوای کاملاً فشرده انجام می گیرد.

S.U وِبِر و هالی وود:

تولید کنندگان کاربراتور و تأثیر آنها
در زمان های مشخصی مدل های کاملاً شناخته شده ای از کاربراتور وارد بازار شدند که چند تا از آنها هنوز هم بخشی از اتومبیل های قدیمی در این دوران هستند. یکی از مشخص ترین کاربراتورها که در اتومبیل های انگلیسی مورد استفاده قرار می گرفت، کاربراتور S.U مخفف Skinners Union بود که نام مخترعان آن را که عبارت بودند از G.H و T.C اسکینر را داشتند. در این کاربراتور کنترل جریان بنزین و اندازه گیری آن از طریق بالا و پایین رفتن یک پیستون که در مقابل اهرم گاز از خود واکنش نشان می داد انجام می گرفت و طرز کار این گونه بود که با فشار آوردن به اهرم یا پدال گاز یک خلاء جزئی در کاربراتور ایجاد می گردید و پیستون به حرکت درمی آمد و حرکت پیستون یک سوپاپ سوزنی شکل را نیز به حرکت درمی آورد که با حرکت آن سوخت وارد جریان هوای ورودی می شد.
یکی از کاربراتورهای کلاسیک که عمدتاً در اتومبیل های ایتالیایی از جمله آلفارومئو مورد استفاده قرار می گرفت، کاربراتور وبر (Weber) بود که دارای چند نازل و دهنه بود که اگر بخواهیم در مورد سازه آن و نحوه کارش صحبت کنم می بایست نیمی از مقاله را به آن اختصاص دهیم. البته مشکل کاربراتورهای وبر، تنظیم دقیق آن بود که در آن صورت عملکرد فوق العاده ای داشت ولی همواره صاحبان آن با مشکل تنظیم دقیق روبه رو بودند. تولید کننده کاربراتور هالیوود می گفت که اگر یک فیل خوب است بنابراین یک گله صد تایی نیز خوب است. یک کاربراتور ساده کمک چندانی نمی تواند انجام دهد ولی می تواند در نزدیکی محفظه احتراق و دور از سایرین باشد. امّا چند کاربراتور می توانند نقش جدی در موتور داشته باشند ولی نباید فراموش کرد که تنظیم چند کاربراتور که بتوانند مخلوط مناسبی از سوخت را در اختیار موتور قرار دهند، کار چندان آسانی نبوده است.

پیش به سوی نگرشی متفاوت و مثبت: تزریق سوخت

در دورانی از صنعت اتومبیل این موضوع مطرح گردید که به جای اینکه ما خود را وابسته به نیروی ثقل برای حفظ سطحی از سوخت در باک سوخت کرده و از خلاء جزئی برای مکش بنزین به داخل جریان سوخت استفاده کنیم، چرا آن را تزریق نکنیم؟ در واقع در ابتدا ایده تزریق بنزین باعث انحراف بسیاری از دست اندر کاران گردید. اولین مورد استفاده گسترده آن در یک هواپیمای جنگنده در طول جنگ جهانی دوم بود.
اولین اتومبیلی که مجهز به سیستم تزریق سوخت بود اتومبیلی به نام Gutbrod Superior 600 در سال 1953 بود که یک پیشرانه 2 سیلندر دو زمانه داشت و چندان از نظر فنی و تکنیکی شرایط ممتازی نداشت. اتومبیل بعدی که در آن از سیستم تزریق سوخت مشابهی استفاده شده بود Goliath GP 700 بود. امّا شناخته شده ترین اتومبیلی که برای نخستین بار از سیستم تزریق سوخت در آن استفاده شد مرسدس بنز ‎300SL در سال 1954 بود که البته مدل های قبلی آن از انواع کاربراتوری بودند. اولین سیستم های تزریق بنزین ساخت کمپانی بوش آلمان بودند که اساس کاری آنها از سخت افزار مورد استفاده در پیشرانه های دیزلی اقتباس شده بود که دارای پمپ جداگانه برای انتقال بنزین و در اختیار گذاردن مستقیم بنزین به هر سیلندر بود. بنابراین ملاحظه می کنید که تکنولوژی تزریق مستقیم سوخت پیشینه ای دیرینه دارد. امّا در ایالات متحده شرکت STU HILBORN در اواخر سال های دهه 1940 اقدام به معرفی سیستم تزریق مکانیکی مشابهی کرد که در اتومبیل های مسابقه ای دارای کاربرد بود و کمپانی جنرال موتورز و بخش روچستر آن سیستم تزریق سوختی را ابداع کردند که به صورت سفارشی در شورولت کوروت 1957 مورد استفاده قرار گرفت. شرکت بندیکس (Bendix) اقدام به عرضه سیستم های تزریق بنزین در سال 1957 برای مدل Rebel شرکت امریکن موتورز کرد که بسیار موفقیت آمیز بود و یکسان بعد از آن در سایر اتومبیل های آمریکایی مانند انواع کرایسلر، دوج، دسوتو و پیلوت نیز مورد استفاده قرار گرفت. اگر بخواهیم آنها را با سیستم های تزریق امروزی مقایسه کنیم باید بگوییم که ساختار آنها آنالوگی بود و معمولاً دارای ولتاژ قابل تنظیم بودند یعنی سیستم الکترونیکی که براساس آنالوگ کارآیی دارد ولی امروزه سیستم های تزریق سوخت الکترونیکی براساس نقشه های دیجیتالی کار می کنند. به استثناء تلاش ها و مدل های که در ابتدا آلمانی ها عرضه کردند، تمامی سیستم های تزریق بنزین از نوع Port Injection بودند یعنی سوخت که همان بنزین باشد مستقیماً از طریق سوپاپ ورودی و جریان هوایی که به داخل آن حرکت می کرد وارد محفظه احتراق می گردید.

تلاش کمپانی بوش در رفع مشکل

سایر مدل های تزریق سوخت دارای تفاوت هایی در زمینه های نوع اندازه گیری هوا در آنها و سخت افزار تزریق بود. سیستم های بوش عالی ترین مثال ها در زمینه توسعه سیستم های تزریق بودند: در مدل D-Jetronic که در سال 1967عرضه شد برای محاسبه جرم هوا و به پیروی از آن اندازه گیری میزان بنزین که باید تزریق شود، از فشار در منیفولد (چند راهه) ورودی و سرعت دوران موتور استفاده می شد. پس از آن در سال 1974 کمپانی بوش سیستم تزریق K-Jetronic را معرفی کرد که باز هم یک مدل مکانیکی بود که قابلیت اندازه گیری میزان جریان هوای ورودی به داخل سیلندر و همین طور سوخت تزریقی را به صورت دائمی در داخل مجاری انتقال دارا بود. پس از آن نوبت به مدل KE-Jetronic رسید که در آن برای نخستین بار از الکترونیک استفاده شد. سیستم تزریق L-Jetronic در سال 1982 به بازار آمد که قابلیت اندازه گیری مستقیم میزان جریان هوای ورودی را داشت و همین طور تزریق سکانسی یا سریالی را داشت.
با ورود LH-Jetronic حسگر مخصوص جریان هوا و کنترل آن که به صورت قلاپ بود، جای خود را به Hot-Wire یا اصطلاحاً سیم داغ داد که دیدگاهی بسیار حرفه ای و ماهرانه بود و می توانست با استفاده از کنترل جریانی که مورد نیاز برای حفظ یک سیم براساس درجه حرارت از قبل تعیین و تنظیم شده است، اقدام به محاسبه غیرمستقیم حجم هوای ورودی کند. در مدل مهندسی و پیشرفته تر این سیستم به جای سیم از یک فیلم داغ استفاده گردید. مدل LH-Jetronic از نوع سیستم الکترونیکی کاملاً دیجیتال بوده که تبدیل به یک استاندارد گردید که هنوز هم در مدل های مختلف اتومبیل مورد استفاده قرار می گیرد. امروزه کمپانی بوش برای مشخص کردن یونیت نصب شده خود که مجموعه ای است از تزریق سوخت با کنترل الکترونیکی و همین طور جرقه زدن از واژه موترونیک استفاده می کند. این دو مورد یعنی تزریق سوخت الکترونیکی و جرقه الکترونیکی گرچه تا حدودی تأثیر روی عملکرد موتور دارند ولی سایر پارامترها و تجهیزات دیگری نیز وجود دارند که در تصویر مشاهده می کنید که همانند یک لوپ بسته و با استفاده از حسگرهای 8 وظیفه کنترل مخلوط مناسب برای بهینه سازی، پایداری در دورهای آهسته موتور، حسگر ضربه، چرخش مجدد گازهای اگزوز (EGR) و بالاخره تزریق مجدد هوا را برای کاهش هیدروکربن های تولیدی در آغاز استارت و در مرحله گرم کردن عهده دار هستند و در نتیجه میزان مواد آلاینده که به صورت مجاز از اگزوز خارج می شوند کاهش پیدا کند. و بالاخره اینکه اخیراً سیستم های الکترونیکی تزریق سوخت با نام Di-Motronic توسط سایر سازندگان عرضه شده اند که اصطلاحاً به آنها تزریق مستقیم سوخت می گویند.

چرا تزریق مستقیم سوخت؟

اگرچه امروزه سیستم های سوخت رسان از طریق تزریق به مجاری ورودی به حیات خود ادامه می دهند ولی مزیت سیستم های تزریق مستقیم که روز به روز عمومیت بیشتری پیدا می کند این است که چون سوخت مستقیماً به داخل محفظه احتراق پاشیده شده و تزریق می گردد لذا اندازه گیری آن دقیق تر است. سایر مزایای سیستم های تزریق مستقیم سوخت عبارتند از تنظیم دقیق زمان ترزیق و محل دقیق تر تزریق سوخت که نتیجه آن تولید نیروی بیشتر توسط موتور است.

چه آینده ای درانتظار HCCI است؟

(HCCI (Homogenous Charge Compression Ignition که به معنای احتراق مخلوط سوخت تحت فشار همگن است، در آن تلفیقی از جرقه زدن شمع در موتورهای بنزینی و کمپرس شدن مخلوط سوخت در موتورهای دیزلی به وجود آمده است. در شرایطی که فشار زیاد به موتور وارد می گردد HCCI رفتاری شبیه موتورهای بنزینی جرقه زن دارد و در شرایط فشار کاری پایین چون امکان استفاده از سوخت رقیق وجود دارد، عملکردی همانند موتورهای دیزلی پیدا می کند و مخلوط سوخت بدون جرقه مشتعل می گردد. بنابراین در وضعیت دوم چون از مخلوط سوخت رقیق استفاده می شود، مصرف بنزین کاهش پیدا می کند امّا نقطه ضعف آن، این است که بعضاً سوختی که از مخلوط بنزین تشکیل شده در صورت اشتعال بدون جرقه ممکن است باعث آسیب وارد آوردن به قطعات موتور شود.
منبع: ماهنامه نوآور، شماره ی 92

 






تاریخ : شنبه 91/4/24 | 3:54 عصر | نویسنده : مهندس سجاد شفیعی | نظرات ()
.: Weblog Themes By BlackSkin :.