رفتار خستگی
خستگی مربوط به فرایندهای ذخیره سازی تخریب در ساختار و در نهایت شکست ماده تحت بارهای سیکلی در یک سطح از تنش پایین تر از استحکام کششی، میباشد.عمر خستگی کل به طور قراردادی به دو رژیم تقسیم میشود: این رژیم شامل زمان مورد نیاز برای جوانه زنی ترک و زمان مورد نیاز برای انتشار آن میباشد. مقاومت به شروع ترک معمولا نیازمند این است که ماده استحکام داشته باشد، در حالی که مقاومت در برابر انتشار ترک نیازمند انعطاف پذیری ماده میباشد. رژیم های خستگی سیکل پایین( LCF) و خستگی سیکل بالا(HCF)، به طور قراردادی با توجه به بزرگی کرنش اعمال شده، قابل تمیز دادن است. آزمون های انجام شده در رژیم HCF در پی پیدا کردن مسائلی است که موجب میشود مقاومت ماده در برابر جوانه زنی ترک بالا رود، در حالی که آزمون های انجام شده در رژیم LCF در پی ارزیابی مقاومت مواد در برابر رشد عیوب میباشد.
مواد نانوساختار برای کاربردهای مهندسی سبک و مدرن مناسب میباشند زیرا این مواد داری خواص مکانیکی بسیار خوبی هستند( تحت بارگذاری سیکلی و یکنواخت). به طور خاص، خواص خستگی فلزات و آلیاژهای نانوساختار یکی از موضوعات کلیدی برای استفادهی موفقیت آمیز از این گروه از مواد جدید در کاربردهای مهندسی میباشد. به دلیل اینکه رفتار مواد نانوساختار به سادگی با اثر هال پچ قابل توصیف نمی باشد، چندین جنبه مانند پایداری ریزساختاری، ایجاد نوارهای برشی، یا توزیع اندازهی دانه در زمینهی توصیف خواص این مواد مورد بررسی قرار گرفته است. از آنجایی که تنها مقالات اندکی در زمینهی رفتار خستگی فلزات نانوساختار واقعی موجود میباشد، این زمینه از علم عمدتا به بررسی مواد نانوساختار تولید با روش SPD، اختصاص یافته است. اولین بررسی ها بر روی رفتار تغییر شکل سیکلی مواد UFG بر روی مس و بوسیلهی Vinogradov و Agnew و Weertmann انجام شده است. این بررسی بیش از1 دههی پیش انجام شده است. تاکنون تنها بررسی های سیستماتیک اندکی بر روی رفتار خستگی مس UFG، نیکل، آلومینیوم و برنج آلفا انجام شده است. به دلیل پیشرفت های انجام شده در زمینهی فرایند های SPD، مواد چند فازی UFG مانند آلیاژهای Al، آلیاژهای Mg، آلیاژهای FeCrو آلیاژهای تیتانیوم به طور موفقیت آمیز با استفاده از روش ECAP تولید شوند. درنتیجه، خواص خستگی این مواد مورد بررسی قرار گرفته است.
اخیر این مسئله به صورت تجربی در تعدادی از مواد مشاهده شده است که ایجاد ساختارهای بسیار ریز معمولا مقاومت به خستگی را نسبت به مواد با ساختار معمولی، بهبود میدهد. برای مثال، عمر خستگی و حد پایداری برای سیکل های با دامنهی تنش ثابت برای نیکل و آلیاژهای Al-Mg وقتی افزایش مییابد که ریزساختار از حالت میکروکریستالی به UFG و نانوساختار تبدیل شود. در مورد مس، که متداول ترین ماده در این بررسی هاست، یک بهبود در عمر خستگی در هنگام ایجاد مس UFG مشاهده شده است.
یک بهبود مناسب در حد خستگی در مواد با لغزش صفحه ای( مانند Ti فرآوری شده با روش ECAP در دمای 400 درجهی سانتیگراد که بعد از این فرایند تحت عملیات CR به یک کاهش در مساحت 75 % میرسد و سپس در دمای 300 درجه به مدت 1 تا 2 ساعت تحت عملیات آنیل قرار داده میشود) مشاهده شده است. حد خستگی برابر با 500 مگا پاسکال برای تیتانیوم SPD شده تقریبا نزدیک به آلیاژهای متداول Ti است( شکل 4).
این به نظر میرسد که نرم شدگی سیکلی، رشد دانه ها و تمرکز کرنش، مکانیزم های اصلی برای کاهش مقاومت به خستگی ساختارهای UFG تحت دامنه های کرنش پلاستیک یکسان میباشد. نرم شدگی سیکلی که به دلیل بارگذاری سیکلی ایجاد میشود، در مطالعات اولیه در زمینهی مس UFG مشاهده شده است. این نتیجه گیری شده است که این نرم شدگی به دلیل کاهش عمومی در دانسیتهی عیوب و احتمالا تغییر در جهتگیری مرزدانه ها، ایجاد شده است.
در دامنه های کرنش پایین، نرم شدگی کمتر ایجاد شده است. نمودار سیکل سخت شدگی یا نرم شدگی در طی بیشتر بخش های عمر خستگی مسطح است و هیچ نرم شدگی تحت دامنهی کرنش پلاستیک( کمتر از ) مشاهده نشده است. رفتار نرم شدگی عملا به پارامترهای بارگذاری و ریزساختاری وابسته است. یک ریزساختار با دانه های هم محور( نوع A) دارای رفتار سیکلی تقریبا پایدار است. در حالی که یک ریزساختار دارای دانه های باریک و کشیده یا لایه ای ( نوع B) تحت شرایط بارگذاری یکسان، دارای نرم شدگی قابل توجهی است.
رشد دانه و تغییر در ریزساختار که به دلیل ایجاد پدیدهی خستگی بوجود آمده است، به طور مکرر در مس UFG مشاهده شده است و همچنین شواهدی وجود دارد که در این مواد اندازهی سلول افزایش قابل توجهی دارد. نواحی با دانه های ری کریستال شده در ساختار UFG نوع B ایجاد میشوند، در حالی که ری کریستالیزاسیون و رشد دانه در ساختار نوع A مشاهده نشده است. شواهدی وجود دارد که نشان میدهد ری کریستالیزاسیون در مس UFG با خلوص بالا( بعد از یک بارگذاری با کرنش پلاستیک ثابت) افزایش یافته است. در کار اخیری که در این زمینه انجام شده است، این فرض شده است که ساختار ویژه ا ی از نابجایی ها میتواند در دانه های بسیار ریز ایجاد شود در حالی که یک ساختار ویژه دیگر از نابجایی، در دانه های درشت، ایجاد شده است. در دامنه های کرنش بالاتر، یک ساختار سلولی و دانه ای تعریف شده در مس UFG مشاهده شده است.
تمرکز کرنش سیکلی موجب میشود تا ایجاد ترک شروع شود و یکی از ویژگی های مهم فرایند خستگی در مواد UFG است. توسعهی نوارهای برشی ماکروسکوپیک( SBs) یکی از شکل های اصلی تخریب های خستگی در مواد UFG تولید شده با روش ECAP میباشد. بنابراین، نوارهای برشی قرار گرفته در زاویهی 45 درجه نسبت به محور بارگذاری، بر روی سطح نمونه های مسی مشاهده شده است که به صورت سیکلی بارگذاری شده است. در اینجا این نوارها به طور ماکروسکوپیک موازی صفحات برشی آخرین عبور از سیستم اکستروژن میباشد. نشان داده شده است که این نوارهای برشی بعد از پولیش سطح نیز بر روی آن ظاهر میشوند. این مقاومت طبیعی نشان میدهد که آنها مکان های مستعدتری برای تغییر شکل سیکلی میباشند. مشاهدات بدست آمده بعد از LCF همچنین آشکار ساخته است که اکسترود کردن و اینتروژن( دو فرایند شکل دهی با جهات متفاوت- یکی به سمت بیرون و دیگری به سمت داخل) از لحاظ خواص خستگی مشابه میباشند. این مشاهدات از بررسی ها بر روی تک کریستال های مس بدست آمده است. برای مواد UFG، ابعاد متوسط اکستروژن( هم از لحاظ طول های آنها و هم از لحاظ زاویهی بین آنها) از اندازه دانهی بسیار ریز، بزرگتر است. با توجه به این مسئله، جزئیات ایجاد شده در هنگام تشکیل یک چنین نوارهای برشی کاملا مشخص نیست. این پیشنهاد شده است که مکانیزم بوجود آمده در تشکیل یک چنین نوارهای برشی در واقع برهمکنش های میان درشت شدن اندازهی دانه و چرخش دانه ها میباشد. در این مکانیزم، درشت شدن موضعی ابتدا رخ میدهد و سپس تمرکز برشی ظاهر میشود. این نیز پیشنهاد شده است که ری کریستالیزاسیون به طور ترجیحی در برخی نواحی رخ میدهد و ساختاری نواری تشکیل میدهد. این اعتقاد وجود دارد که رشد دانه که با تغییر شکل سیکلی شروع میشود، یکی از متداول ترین ویژگی های فلزات UFG شده است. به عبارت دیگر، رشد دانهی قابل تخیصی در نزدیکی نوارهای برشی، مشاهده نشده است که این مسئله نشان میدهد هیچ رابطه ای میان نوارهای برشی و درشت شدن دانه ها وجود ندارد.
برخی بحث ها در زمینهی اثر فرایند ECAP بر روی خستگی و ایجاد کارایی خستگی بهینه، وجود دارد. این نکته تذکر داده شده است که عبور ماده از میان یک تعداد از مسیرهای ECAP منجر به افزایش استحکام یکنواخت و حد خستگی میشود. علاوه بر این، خواص خستگی فلزات UFG میتواند با ایجاد انعطاف پذیری و کاهش قیود موجود در برابر حرکت نابجایی ها، بهبود یابد. به عنوان مثال، با کاهش تمایل برای ایجاد نوارهای برشی و تمرکز کرنش که در بسیاری از فلزات سخت شده، وجود دارد، این مسئله میسر میشود. بنابراین، این کار میتواند موجب بهبود خواص خستگی موادی مورد استفاده قرار گیرد که دارای ساختار نسبتا بازیابی شده هستند. اثر مثبت عملیات حرارتی بر روی LCF در مطالعات اولیه بر روی خواص خستگی مواد فرآوری شده با ECAP مشاهده شده است. این نشان داده شده است که استفاده از تکنیک انتشار اکوستیک و بررسی های ماکروسکوپیک سطحی، میزان قابلیت ایجاد نوارهای برشی در مس ECAP شده، به طور قابل توجهی کاهش مییابد( این مسئله بعد از یک زمان کوتاه آنیل( تنها 10 دقیقه) در دمای 250 درجه ایجاد میشود). در این وضعیت عمر LCF میتواند به میزان 5 الی 10 برابر افزایش یابد. اینم در حالی است که فرآوری با ECAP منجر به یک کاهش قابل توجه در انعطاف پذیری سیکلی و استحکام کششی میشود. اگر همان ماده را تحت عملیات آنیل قرار دهیم( بعد از فرایند ECAP)، میتوان ماده ای با انعطاف پذیری بالاتر حاصل شود وبنابراین عمر خستگی بدین وسیله بهبود مییابد. از آنجایی که فلزات تحت SPD قرار داده شده بعد از تولید دارای مقداری انعطاف پذیری هستند، استحکام کششی و سیکلی بالای آنها میتواند بعد از فرآوری( از طریق استفاده از روش CR با یا بدون آنلیل در دمای متوسط)، بهبود یابد. این مسئله برای برخی از آلیاژهای آلومینیوم و منیزیم، تیتانیوم خالص تجاری و آلیاژهای تیتانیوم مشاهده شده است.
اثر ایجاد رسوبات بر روی فلزات نانوساختار تولید شده با روش SPD، پیچیده است. به عبارت دیگر، این را میتوان در ابتدا گفت که رسوبات میتوانند به طور قابل ملاحظه ای پایداری حرارتی فلزات SPD شده را افزایش دهند و به عبارت دیگر، مرزدانه ها ممکن است در طی عملیات پیرسازی، بازیابی شوند و بدین وسیله تمایل آنها به تمرکز کرنش و ایجاد ترک های پیش از موعد، کاهش مییابد. به عنوان مثال، این نشان داده شده است که پیرسازی بهینه که بر روی آلیاژ Cu-Cr-Zr فرآوری شده با ECAP انجام شده است، ساختاری را پدید میآورد که دارای استحکام بالا و اندازهی دانهی 200 نانومتر است. این ساختار بعد از آنیل در دماهای بالا مانند 500 درجهی سانتیگراد، نیز حفظ شده است. این نشان داده شده است که ECAP انجام شده بر وی آلیاژ Al-2024 و سپس پیرسازی در دمای پایین میتواند به طور قابل توجهی هم استحکام و هم انعطاف پذیری را افزایش دهد. بنابراین، نمونه هایی که در دمای 100 درجهی سانتیگراد به مدت 20 ساعت، پیرسازی شده است، دارای استحکام کشش نهایی برابر با میباشد و ازدیاد طول کل تا نقطهی شکست در آنها برابر با میباشد. این همچنین نشان داده شده است که تنش تسلیم و استحکام کشش آلیاژ Al-6061 که تحت عملیات ECAP چند مرحله ای (به تعداد 4 پالس) قرار داده شده نسبت به نمونهی ST فرآوری شده بوسیلهی ECAP تک مرحله ای در دمای 125 درجه، بهتر است.
اگر چه اثر یک مرحله عبور در ECAP که بر روی آلیاژ آلومینیوم 6061 انجام شده است، زیاد است، این به طور واضح مشخص نشده است که آیا میتوان استحکام و انعطاف پذیری یکسانی را بعد از عملیات های متداول بر روی آلیاژهای آلومینیوم، بدست آورد یا نه!
از این رو، این به نظر میرسد که چندین روش رقابتی کلی برای بررسی میزان افزایش خواص خستگی از طریق فرایندهای SPD وجود دارد. اولین روش، ایجاد یک توافق میان استحکام و انعطاف پذیری میان تعداد حداقل سیکل های عبور از ECAP میباشد. در واقع در جاهایی که ممکن است، تنها یک سیکل عبور مورد استفاده قرار میگیرد زیرا عبور یک سیکل میتواند کرنش های اندکی ایجاد کند. راه دوم بوسیلهی ایجاد ماکزیمم استحکام ممکنه حاصل میشود. این استحکام ماکزیمم منجر به پدید آمدن عمر HCF میشود. راه سوم حصول استحکام و انعطاف پذیری بالا از طریق ECAP چند مرحله ای و اعمال فرایند های ترمومکانیکی متعاقب میباشد. این کار هم عمر LCF و هم عمر HCF را افزایش میدهد.
بر اساس جوانب مطرح شده در خواص خستگی مواد نانوساختار مختلف که قبلا مورد توصیف شده اند، چندین استراتژی برای بهبود خواص خستگی BNM ها میتواند حاصل شود. بر اساس مقالات می توان گفت، شکل 5 شماتیکی از این استراتژی های بهبود دهنده و موضوعات کلیدی اثرگذار بر روی عمر خستگی مواد نانوساختار، را نشان داده است. استراتژی های مهم برای بهبود خواص خستگی بوسیلهی پارامترهای ECAP بهینه میشوند. این پارامترها عبارتند از دمای ECAP، سرعت عبور ماده و فشار بازگشتی اعمال شده در فرایند ECAP میباشند. علاوه بر این، انتخاب مناسب نوع و مقدار عناصر آلیاژی نیز میتواند استحکام خستگی را بعبود دهد. این فعالیت ها همچنین باید بر روی پایداری سیکلی ریزساختار نیز تأثیر مثبت داشته باشند و از تشکیل نوارهای برشی در طی فرایند ECAP جلوگیری کنند.
افزایش در انعطاف پذیری مادهی UFG یکی دیگر از استراتژی هابرای بهبود خواص خستگی مواد UFG است. این مسئله مخصوصا در رژیم LCF و در زمانی که دامنهی های کرنش پلاستیک بر روی عمر خستگی اثر گذار هستند، مشهود میباشد. انعطاف پذیری مواد UFG میتواند با استفاده از عملیات حرارتی بازیابی مناسب بعد از فرایند SPD افزایش یابد. این فرایند منجر به کاهش دانسیتهی نابجایی ها و ایجاد یک پیکربندی پایدار در مرزدانه ها، میشود. علاوه بر این، انتشار سیکلی ترک به طور مثبت بر روی عملیات حرارتی بازیابی اثر میگذارد.
بنابراین، این عادلانه است که بگوییم تا امروز نتایج مناسبی برای این مسئله وجود دارد که فرایند SPD بر روی خواص خستگی اثر گذار است، اما با این حال، فرصت های قابل ملاحظه ای برای توسعهی روش های فرآوری بهینه وجود دارد که بوسیلهی آنها بتوان خواص خستگی مناسب در مواد تولید شده با روش SPD، ایجاد شود.
مکانیزم های دیگر برای تغییر شکل در اندازهی دانه های بسیار ریز
وقتی اندازهی دانه در مواد UFG بدست آمده بوسیلهی روش SPD بسیار کوچک شود( معمولا کمتر از 100 نانومتر)، مکانیزم های تغییر شکل جدید ممکن است بوجود آید که این مکانیزم های جدید میتوانند نقش قابل توجهی در رفتار مکانیکی داشته باشند. بنابراین، بر اساس مشاهدات تجربی و شبیه سازی های کامپیوتری، این آشکار شده است که مواد با اندازهی دانهی نانوکریستالی از طریق مکانیزم هایی تغییر شکل میدهند که این مکانیزم ها در مواد معمولی قابل قبول نمی باشند. برای مثال، وقتی اندازهی دانه کمتر از 100 نانومتر است، انتشار نابجایی های جزئی از مرزدانه ها یکی از مکانیزم های عمده در تغییر شکل میباشد. این نتیجه از مشاهدات انجام شده بر روی مس و آلومینیوم UFG شده، بدست آمده است. این مسئله مهم است که بدانید در آلومینیوم معمولی هیچگاه تغییر شکل با استفاده از فرایند دوقلویی شدن ایجاد نمی شود( حتی در دکاهای پایین و سرعت های کرنش بالا). مشاهدات TEM انجام شده بر روی مس HPT شده نشان میدهد که نواحی وجود دارد که در آنها دوقلویی شدن اتفاق افتاده است. همچنین نقص های چیده شدن بسیاری وجود دارد که از مرزدانه ها به دانه ها گسترش یافته است اما به مرزدانه های مجاور نرسیده است. بنابراین این مسئله شواهد مستقیمی از این موضوع است که نابجایی های جزئی از منابع موجود در داخل مرزدانه ها، انتشار یافته اند.علاوه بر آن، مواد نانوساختار تولید شده با روش های SPD به طور خاص دارای مرزدانه های غیر تعادلی هستند که این مسئله بوسیلهی وجود تعداد زیادی از نابجایی های غیر هندسی قابل تشخیص میباشد. برخی از این نابجایی ها ممکن است مربوط به پاره های شاتکی باشند و قادر هستند با اعمال تنش بر روی ماده، از مرزدانه دور شوند. این مرزدانه ها میتوانند به عنوان منابع تولید و خنثی سازی نابجایی های جزئی عمل کنند. علاوه براین، نابجایی های جزئی ممکن است همچنین از مرزدانه ها و از طریق فرایند مخلوط شدن مجدد اتمی، ایجاد شوند.
به دلیل اینکه تعداد مرزدانه ها در واحد حجم با کاهش اندازهی دانه، افزایش مییابد، این انتظار وجود دارد که سایر مکانیزم های تغییر شکل شامل لغزش مرزدانه ها و چرخش مرزدانه ها نیز ایجاد شوند. از این رو با کاهش اندازهی دانه، این فرایندها مهم میشوند. در طی تغییر شکل، چرخش دانه بطور پیچیده ای به لغزش مرزدانه ها در ارتباطند. بنابراین، حرکت نابجایی ها بر روی سیستم های لغزش ترجیحی موجب میشود تا دانه ها و بافت کریستالوگرافی، بچرخند. در عوض، این مسئله منطقی به نظر میرسد که چرخش از طریق لغزش مرزدانه ها به تنهایی و به طور اتفاقی موجب توزیع جهت گیری دانه ای میشود. بنابراین این نکته حائز اهمیت است که آزمایشات انجام شده بر روی Pd نانوکریستالی که در دمای اتاق و با سرعت کرنش واقعی 0.6 تحت عملیات نورد قرار گرفته است، نشان داده است که توزیع جهت گیری دانه ها تصادفی در مادهی اولیه، حفظ شده است، در حالی که در مادهی تغییر شکل داده شده، یک بافت ترجیحی حاصل از نورد، مشاهده شده است. این نتایج شواهد محکمی در زمینهی وجود نقش قابل توجه چرخش دانه بر روی فرایند تغییر شکل فلز نانوکریستالی را ارائه کرده است. این در حالی است که این چرخش به طور مکانیکی مشابه چرخش دانه ای است که در طی تغییر شکل سوپرپلاستیک مواد( با اندازهی دانهی میکرومتری) در دمای بالا، رخ میدهد.
در فلزات UFG تولید شده با روش ECAP، لغزش مرزدانه ها به طور تجربی مشاهده شده است. این مشاهدات از کار اخیر بر روی مس UFG شده با اندازهی دانهی 210 نانومتر، حاصل شده است. در این بررسی، مشارکت لغزش مرزدانه ها بر روی کرنش کل برابر با 20 % تخمین زده شده است. اخیرا، اثرات برشی ماکروسکوپیکی گزارش شده است که بر روی سطح نمونه های مس، نیکل و آلومینویم UFG ایجاد شده اند. این نتایج بعد از انجام تست کشش در دمای اتاق حاصل شده است در حالی که این مشاهدات با مدل لغزش مزوسکوپیک توسعه داده شده برای مواد نانوکریستالی، سازگار میباشد. در آزمایشهایی که به تازگی انجام شده است، در یافتهاند که توسعهی فعال لغزش مرزدانهها به طور مستقیم در آلومینیوم UFG شدهای رخ میدهد. تخمین زده شده است که مشارکت لغزش در این آزمایشها، برابر با 70 % بوده است. این نتایج از اندازهگیریهای انجام شده بر روی پروفایل های سطحی ایجاد شده در اطراف نقاط سختی سنجی شده، حاصل شده است و به طور جدی وجود لغزش در تغییر شکل رخ داده در ساختار UFG را تأیید میکند.
این مسئله مهم است که بدانید این داده ها به طور نزدیکی با نتایج به دست آمده از حساسیت نرخ کرنش در این مواد، تطابق دارد. در واقع، حساسیت نرخ کرنش شاخصی از میزان ویسکوز بودن جریان است. برای مثال در فرایند سوپرپلاستیسیتهی میزان حساسیت نرخ کرنش برابر با 0.5 میباشد.
سوال باقی مانده این است که چرا لغزش مرزدانه ها که در مواد نانوساختار تولید شده با روش SPD ( در دمای پایین) ایجاد میشود، در مقایسه با دماهای مطلق ذوب مواد، پایین است. بنابراین دمای معمولی برای آلومینیوم خالص مشابه دمای است در حالی که دمای مطلق ذوب ماده است. از آنجایی که لغزش مرزدانه ها یک فرایند کنترل شونده با استفاده از نفوذ است، این فرایند ترجیحا در دماهای بالا انجام میشود. با اینحال، این مسئله جالب است که بدانید، امکان لغزش در دمای پایین در بسیاری از کارهای اولیه در این زمینه، مورد بحث بوده است. یک توضیح ممکنه برای وقوع لغزش در فلزات UFG این است که نفوذ در فلزات SPD شده سریع تر است زیرا در این مواد ساختار مرزدانه ها غیر تعادلی است. آزمایشها نشان داده است که در فلزات تولید شده با روش SPD، ضریب نفوذ به طور قابل ملاحظهای افزایش مییابد و میتواند دو تا سه برابر شود. این مسئله به طور مستقیم به دلیل حضور مرزدانههای غیر تعادلی بوجود میآید. با توجه به این موضوع، به نظر میرسد که لغزش مرزدانهها در فلزات UFG شده با سهولت بیشتری ایجاد میشود و این موضوع باعث میشود تا انعطاف پذیری در این مواد افزایش یابد. این به خوبی فهمیده شده است که افزایش لغزش در فلزات نانوساختار ممکن است منجر به وقوع سوپرپلاستیسیته در دماهای نسبتا پایین شود.
بنابراین، نتایج اخیر که از شبیه سازی و انجام آزمایش حاصل شده است، شواهد محکمی ارائه کرده اند که به وسیلهی آنها پیشنهاد میشود در مواد نانوساختار، مکانیزم های تغییر شکل جدیدی رخ میدهد که این مکانیزم ها در مواد معمولی بوجود نمی آیند. یکی از وظیفه های مهم در تحقیقات آینده تشخیص و اندازه گیری روابط میان این مکانیزمهای تغییر شکل جایگزین میباشد. همچنین باید اثر این مکانیزمها بر روی رفتار مکانیکی فلزات UFG نیز بررسی گردد.
تاریخ : سه شنبه 94/4/30 | 4:28 عصر | نویسنده : مهندس سجاد شفیعی | نظرات ()