سفارش تبلیغ
صبا ویژن

مکانیزم‌های تغییر شکل در مواد نانوساختار

مترجم: حبیب الله علیخانی

منبع:راسخون

یکی دیگر از روش های جدید برای کاهش انعطاف پذیری از طریق ایجاد توزیع اندازه‌ی دانه‌ی بی مودال( bimodal) انجام می‌شود. در برخی مقالات، مس نانوساختار از طریق ترکیبی از روش های ECAP و نورد ثانویه در دمای پایین( در نیتروژن مایع)، پیش از حرارت دهی در دمایی در حدود 450 K، تولید می‌شود. این روش یک ساختار بی مودال با دانه هایی با اندازه‌ی میکرونی ایجاد می‌کند که در آن یک کسر حجمی حدودا 25 % از این ذرا ت در داخل زمینه ای از دانه های نانوکریستالی قرار دارند. مواد تولید شده با این روش، دارای انعطاف پذیری بسیار بالایی است در حالی که استحکام این مواد بالاست. دلیل یک چنین رفتاری این است که در حالی که دانه های نانوکریستالی استحکام ایجاد می‌کنند، دانه های بزرگتر که در داخل این زمینه واقع شده اند، تغییر شکل کششی این مواد را پایدار می‌کنند.

سایر شواهد در مورد اهمیت توزیع اندازه‌ی دانه در مورد روی، مس و آلیاژهای آلومینیوم نیز مشاهده شده است. علاوه بر این، بررسی های انجام شده بر روی مس، نشان داده است که ساختار بی مودال ممکن است انعطاف پذیری را افزایش دهد. این افزایش نه تنها در طی تست کشش ایجاد می‌شود بلکه همچنین در طی تغییر شکل سیکلی نیز ایجاد می‌شود. این مشاهدات برای بهبود خواص خستگی مواد مهم می‌باشند. روش سومی که برای افزایش استحکام پیشنهاد شده است، ایجاد ذرات فاز ثانویه در داخل زمینه ای از فلز نانوساختار می‌باشد. این به نظر می‌رسد که با استفاده از این ذرات، انتشار باند برشی( SB) در طی ایجاد کرنش اصلاح می‌شود و بنابراین استفاده از این ذرات موجب افزایش انعطاف پذیری می‌شود.
قانون حصول استحکام و انعطاف پذیری بالا با استفاده از ایجاد فازهای شبه پایدار میانی، به طور موفقیت آمیز در آلیاژ تجاری Al-Zn-Mg-Cu-Zr و آلیاژ Al-10.8%Ag که تحت فرایند ECAP و پیرسازی متعاقب قرار گرفته اند، مشاهده شده است. قانون این روش در شکل 10.11 برای آلیاژ Al-Ag مشاهده می‌شود. در این شکل، میکروسختی بر واحد ویکرز نسبت به زمان پیرسازی در دمای 373 K نشان داده شده است. نمونه های مورد استفاده در این روش ابتدا با استفاده از یک فرایند محلول سازی(ST) آماده سازی شده و سپس فرایندهای CR و ECAP بر روی آنها انجام شده است. برای شرایط ST، سختی ابتدا پایین است اما با افزایش زمان پیرسازی، این سختی افزایش می‌یابد و در زمان 100 ساعت، به مقدار ماکزیمم می‌رسد. برای شرایط CR، سختی بالاتر است اما با اعمال فرایند پیرسازی، تنها یک افزایش اندک در سختی ایجاد می‌شود. سختی حتی بعد از ECAP نیز بالاتر است و با اعمال فرایند پیرسازی، یک افزایش در مقدار سختی ایجاد می‌شود و ماکزیمم این مقدار بعد از 100 ساعت رخ می‌دهد. مقادیر نسبتا پایین سختی که بعد از فرایند CR ثبت شده است (نسبت به نمونه های ECAP شده) به دلیل کرنش های معادل پایین تر است که در نمونه ها ایجاد شده است. این کرنش ها در CR برابر با 1.4 و در ECAP برابر با 8 می‌باشد به نحوی که ریزساختار بعد از CR شامل دانه ها و مرزدانه هایی با زوایای قرارگیری کوچک هستند. با استفاده از مشاهدات TEM، این نشان داده شده است که سختی ماکزیمم که بعد از ECAP و پیرسازی به مدت 100 ساعت، ایجاد شده است به دلیل ایجاد رسوبات در داخل دانه ذرات کروی (با اندازه‌ی 10 نانومتر) و ایجاد رسوبات باریک (با طول 20 نانومتر) ایجاد شده است. ذرات کروی به عنوان نقاط η تشخیص داده شده اند و شامل آرایه هایی از اتم های حل شونده هستند که به موازات صفحات (001) قرار گرفته اند همچنین رسوبات باریک به عنوان ذرات γ شبه صفحه ای تشخیص داده شده اند. این همچنین نشان داده شده است که فرایند پیرسازی اضافی( تا 300 ساعت) منجر به رشد ذرات γ می‌شود و این مسئله منجر می‌شود تا دانسیته‌ی نقاط η کاهش یابد و بدین صورت یک اتلاف در سختی در طولانی ترین زمان پیرسازی( شکل 1) ایجاد می‌شود. .

مکانیزم‌های تغییر شکل در مواد نانوساختار

اعمال فرایند پیرسازی بعد از ECAP دارای اثر مهمی بر روی رفتار تنش- کرنش در دمای اتاق است( شکل 2). که در اینجا نمودارهای تنش- کرنش بعد از ECAP و بعد از عملیات محلول سازی( ST)، CR و ECAP با پیرسازی اضافی در دمای 373 K به مدت 100 ساعت، نشان داده شده است. هر نمونه‌ی موجود در شکل 2 در دمای محیط و با اعمال تنشی به سرعت مکانیزم‌های تغییر شکل در مواد نانوساختار ، مورد آزمون قرار گرفته است. بنابراین، ST و پیرسازی یک استحکام کششی مناسب ایجاد می‌کنند. در نمودار این نمونه ها ناحیه‌ی گسترده و با کرنش یکنواخت مشاهده می‌شود که نشاندهنده‌ی انعطاف پذیری مناسب است. این در حالی است که CR و پیرسازی استحکام را افزایش می‌دهند اما کرنش یکنواخت آنها محدود است و کاهش قابل توجهی در انعطاف پذیری کل آنها ایجاد می‌شود.

مکانیزم‌های تغییر شکل در مواد نانوساختار

برای شرایط ECAP، استحکام در غیاب فرایند پیرسازی، بالاست اما یک ناحیه‌ی کوچک با کرنش یکنواخت وجود دارد و از این رو کارسختی قابل توجهی مشاهده نمی شود. در عوض، نمونه ای که بعد از اعمال فرایند ECAP بر روی آن، به مدت 100 ساعت پیرسازی شده است، دارای استحکام بالا، یک ناحیه با کار سختی و انعطاف پذیری بالا می‌باشد. در عمل، کرنش یکنواخت 0.14 در این نمونه ایجاد می‌شود. این کرنش مشابه با کرنش یکنواخت 0.17 در نمونه ای است که در آن فرایند ST و پیرسازی بر روی آن انجام شده است. ازدیاد طول شکست در این نمونه برابر با 0.40 می‌باشد که این مقدار نیز با ازیاد طول شکست برای نمونه ای که در آن فرایند ST و پیرسازی انجام شده است، قابل مقایسه است. بنابراین، این نتایج نشان می‌دهد که در آلیاژهای رسوب سختی شده، پتانسیل کاهش استحکام و انعطاف پذیری وجود دارد. علاوه بر ان، اگر چه نتایج نشان داده شده در شکل 1 و 2 به مدل آلیاژ Al-Ag مرتبط است، این را می‌توان پیش بینی نمود که نتایج مشابهی برای آلیاژهای مهندسی تجاری نیز قابل حصول است.
این بد نیست که بدانید، در فلزات UFG ایجاد شده با روش SPD، هم استحکام و هم انعطاف پذیری می‌توانند با انجام تست های مکانیکی در دمای پایین، بهبود یابد. به عنوان مثال، شکل 3 نمودارهای تنش- کرنش مهندسی را برای Ti فرآوری شده با روش UFG را نشان می‌دهد که در آن اندازه‌ی دانه برابر با 260 نانومتر می‌باشد. تست انجام شده بر روی این نمونه در دمای 77K انجام شده است. در دمای اتاق، Ti ئارای انعطاف پذیری و ازدیاد طول شکست کوچکی است( همانگونه که این مسئله در نمودار A قابل مشاهده می‌باشد. این نمودار با سرعت اعمال تنش 1×?10?^(-3) s^(-1) بدست آمده است). به هر حال، در دمای 77K، استحکام ماده به طور شدیدی بالا می‌رود و به مقدار 1.4 GPa می‌رسد. همچنین میزان ازدیاد طول شکست نیز به طور متقارن افزایش می‌یابد و این مقدار با افزایش سرعت کرنش، به میزان ماکزیمم 20 % می‌رسد( شکل 3). در این شکل نمودارهای B-D به ترتیب برای سرعت های کرنش مکانیزم‌های تغییر شکل در مواد نانوساختار ، مکانیزم‌های تغییر شکل در مواد نانوساختار و مکانیزم‌های تغییر شکل در مواد نانوساختار می‌باشد. نتایج استحکام و انعطاف پذیری نسبت به آلیاژ تیتانیوم بهتر و یا حداقل برای آلیاژهای تیتانیوم با درصد بیشتر از عناصر آلیاژی، قابل مقایسه می‌باشد. در اینجا، فرایند گلویی شدن به تأخیر می‌افتد( حتی برای این فلز بسیار سفت) و موجب می‌شود تا یک ناحیه‌ی بزرگتر در زیر نمودار تنش – کرنش ایجاد شود و بدین وسیله رفتار تافنس ماده بهبود می‌یابد. نمودار E کرنش اولیه‌ی 18 % را برای نمونه‌ی Ti مورد بررسی قرار داده شده در دمای 77K نشان داده است.

مکانیزم‌های تغییر شکل در مواد نانوساختار

این به خوبی فهمیده شده است که مس UFG با انعطاف پذیری بالا دارای حساسیت به نرخ کرنش(m) بالاتری است که در اینجا m به صورت مکانیزم‌های تغییر شکل در مواد نانوساختار تعریف می‌شود (σ کرنش اعمال شده و ε^" نرخ کرنش است). مقدار m برای مس ECAP شده با 16 سیکل، برابر با 0.14 می‌باشد این در حالی است که مقدار m برای مس ECAP شده با دو سیکل برابر با 0.06 می‌باشد. مقدار حساسیت نرخ کرنش نشاندهنده‌ی این است که جریان ویسکوز در ماده به گونه ای است که در برابر گلویی شدن، مقاومت ایجاد می‌شود و بنابراین، این ماده انعطاف پذیر است. مقادیر افزایش یافته برای حساسیت نرخ کرنشی همچنین در برخی مطالعات دیگر مشاهده شده است. اخیر این موضوع نشان داده شده است که مقدار m برای آلیاژهای آلومینیوم UFG در دمای اتاق می‌تواند افزایش یافته و به مقدار 0.24 برسد. این مقدار به دلیل دستکاری ترکیب شیمیایی مرزدانه ها رخ می‌دهد و می‌تواند منجر به افزایش انعطاف پذیری در دمای اتاق گردد. در زمان یکسان، همچنین گزارشاتی ارائه شده است که نشان می‌دهد مقادیر m بعد از UFG کاهش می‌یابد. این ممکن است که این تفاوت های ظاهری به دلیل خواص ریزساختاری نمونه ها ایجاد شده اند( زیرا همانگونه که هم اکنون نشان داده شده است، ریزساختارهای تولید شده در حالت UFG، ممکن است، متفاوت باشد( بسته به شرایط کاری).
درنتیجه، مطالعات اخیر نشان می‌دهد که ریز شدن دانه ها در حالت UFG می‌تواند منجر به افزایش استحکام و انعطاف پذیری به طور همزمان شود. یک چنین خواص مکانیکی منحصربفرد در فلزات در توسعه‌ی مواد با ساختار پیشرفته‌ی نسل جدید، بسیار مناسب می‌باشند. به هر حال، حصول چنین خواصی مربوط به ریزساختارهای خاصی است که در حقیقت این ریزساختارها بواسطه‌ی فرایند های دقیق ایجاد می‌شوند. این مسئله نشاندهنده‌ی جنبه‌ی علمی و هنری ایجاد ساختارهای نانومتری با استفاده از روش های UFG، می‌باشد.






تاریخ : سه شنبه 94/4/30 | 4:29 عصر | نویسنده : مهندس سجاد شفیعی | نظرات ()
.: Weblog Themes By BlackSkin :.