نانوتکنولوژی _ انتقال گرما به وسیله نانوسیالات
مقدمه
نانوسیالات به علت افزایش قابل توجه خواص حرارتی، توجه بسیاری از دانشمندان را در سالهای اخیر به خود جلب کرده است، به عنوان مثال مقدار کمی (حدود یک درصد حجمی) از نانوذرات مس یا نانولولههای کربنی در اتیلن گلیکول یا روغن به ترتیب افزایش 40 و 150 درصدی در هدایت حرارتی این سیالات ایجاد میکند [2] [3]؛ در حالی که برای رسیدن به چنین افزایشی در سوسپانسیونهای معمولی، به غلظتهای بالاتر از ده درصد از ذرات احتیاج است؛ این در حالی است که مشکلات رئولوژیکی و پایداری این سوسپانسیونها در غلظتهای بالا مانع از استفاده گسترده از آنها در انتقال حرارت میشود. در برخی از تحقیقات، هدایت حرارتی نانوسیالات، چندین برابر بیشتر از پیشبینی تئوریها است. از دیگر نتایج بسیار جالب، تابعیت شدید هدایت حرارتی نانوسیالات از دما [4] [5] و افزایش تقریباً سه برابری فلاکس حرارتی بحرانی آنها در مقایسه با سیالات معمولی است [6 و7].
این تغییرات در خواص حرارتی نانوسیالات فقط مورد توجه دانشگاهیان نبوده در صورت تهیه موفقیتآمیز و تأیید پایداری آنها، میتواند آیندهای امیدوارکننده در مدیریت حرارتی صنعت را رقم بزند. البته از سوسپانسیون نانوذرات فلزی، در دیگر زمینهها از جمله صنایع دارویی و درمان سرطان نیز استفاده شده است [8]. به هر حال تحقیق در زمینه نانوذرات، دارای آیندهای بسیار گسترده است [9].

یکی از روشهای متداول تهیه نانوسیال، روش دو مرحلهای است [10]. در این روش ابتدا نانوذره یا نانولوله معمولاً به وسیله روش رسوب بخار شیمیایی (CVD) در فضای گاز بیاثر به صورت پودرهای خشک تهیه میشود [11] [ شکل 1. وسط]، در مرحله بعد نانوذره یا نانولوله در داخل سیال پراکنده میشود. برای این کار از روشهایی مانند لرزانندههای مافوق صوت و یا از سورفکتانتها استفاده میشود تا تودههای نانوذرهای به حداقل رسیده و باعث بهبود رفتار پراکندگی شود. روش دو مرحلهای برای بعضی موارد مانند اکسید فلزات در آب، دیونیزه شده بسیار مناسب است [10] و برای نانوسیالات شامل نانوذرات فلزی سنگینی، کمتر موفق بوده است [12].
روش دو مرحلهای دارای مزایای اقتصادی بالقوهای است؛ زیرا شرکتهای زیادی توانایی تهیه نانوپودرها در مقیاس صنعتی را دارند [13].
روش یک مرحلهای نیز به موازات روش دو مرحلهای پیشرفت کرده است؛ به طور مثال نانوسیالاتی شامل نانوذرات فلزی با استفاده از روش تبخیر مستقیم تهیه شدهاند [2] و [12]. در این روش، منبع فلزی تحت شرایط خلاء تبخیر میشود [14] [شکل 1. چپ].
در این روش، تراکم توده نانوذرات به حداقل خود میرسد، اما فشار بخار پایین سیال یکی از معایب این فرایند محسوب میشود؛ ولی با این حال روشهای شیمیایی تک مرحلهای مختلفی برای تهیه نانوسیال به وجود آمده است که از آن جمله میتوان به روش احیای نمک فلزات و تهیه سوسپانسیون آن در حلالهای مختلف برای تهیه نانوسیال فلزات اشاره کرد [16] [شکل 1. راست]. مزیت اصلی روش یک مرحلهای، کنترل بسیار مناسب روی اندازه و توزیع اندازه ذرات است.

-
شکل 2. ارتباط هدایت الکتریکی با جزء حجمی نانو ذرات، بر اساس تئوری میانگین متوسط برای نانو ذرات بسیار هادی (خط چین پایین) و مدل کلوخه های متراکم
انتقال حرارت در سیالات ساکن
بیشترین تحقیقات روی هدایت حرارتی نانوسیالات، در زمینه سیالات حاوی نانوذرات اکسید فلزی انجام شده است [18].
ماسودا افزایش 30 درصدی هدایت حرارتی را با اضافه کردن 3/4 درصد حجمی آلومینا به آب گزارش کرده است. لی [15] افزایش 15 درصدی را برای همین نوع نانوسیال با همین درصد حجمی گزارش کرده است که تفاوت این نتایج را ناشی از تفاوت در اندازه نانوذرات بهکار رفته در این دو تحقیق میداند. قطر متوسط ذرات آلومینای بکاررفته در آزمایش اول 13نانومتر و در آزمایش دوم 33 نانومتر بوده است. زای و همکاران [20] [19] افزایش 20 درصدی را برای 50 درصد حجمی از همین نانوذرات گزارش کردهاند. گروه مشابهی [21] برای نانوذرات کاربید سیلیکون نیز به نتایج مشابهی رسیدند. لی بهبود نسبتاً کمتری را در هدایت حرارتی نانوسیالات حاوی نانوذرات اکسید مس، نسبت به نانوذرات آلومنیا مشاهده کرد؛ در حالی که ونگ [24] 17 درصد افزایش هدایت حرارتی را برای فقط 4/0 درصد حجمی از نانوذرات اکسید مس در آب گزارش کرده است. برای نانوسیال با پایه اتیلن گلیکول، افزایش بالای 40 درصد برای 3/0 درصد حجمی مس با متوسط قطر ده نانومتر گزارش شده است. پتل [5] افزایش بالای 21 درصد برای سوسپانسیون 11 درصد حجمی از نانوذرات طلا و نقره که به ترتیب در آب و تولوئن پراکنده شده بودند را مشاهده کرد. در مواردی هم هیچ افزایش قابل توجهی در هدایت مشاهده نشده است
[23].
اخیراً تحقیقات دیگری روی وابستگی هدایت به دما برای غلظتهای بالای نانوذرات اکسید فلزات و غلظتهای پایین نانوذرات فلزی در حال انجام است که در هر دو مورد در محدوده دمای 20 تا 50 درجه سانتیگراد افزایش دو تا چهار برابری در هدایت مشاهده شده است و در صورت تأیید این خواص برای دماهای بالاتر میتوان نانوسیال را در سیستمهای گرمایشی نیز استفاده کرد.
بیشترین افزایش هدایت در سوسپانسیون نانولولههای کربنی گزارش شده است که علاوه بر هدایت حرارتی بالا، نسبت طول به قطر بالایی دارند[شکل 3]. از آنجا که نانولولههای کربنی، تشکیل یک شبکه فیبری میدهند، سوسپانسیون آنها بیشتر شبیه کامپوزیتهای پلیمری عمل میکند. بیرکاک[25] افزایش 125 درصدی هدایت را در اپوکسی پلیمر- نانولوله حاوی یک درصد نانولوله تک دیواره گزارش کرد، همچنین مشاهده کرد که با افزایش دما، هدایت حرارتی افزایش مییابد.
چوی[3] برای سوسپانسیون یک درصد نانولولههای چند دیواره در روغن [شکل 3 ب] 16 درصد افزایش هدایت حرارتی گزارش کرده است. گزارشها و تحقیقات مختلفی در زمینه افزایش هدایت حرارتی سوسپانسیون نانولولهکربنی ارائه شده است؛ زای [26] افزایش ده تا 20 درصدی هدایت حرارتی را در سوسپانسیون یک درصد حجمی با سیال آب گزارش کرده است. ون و دینگ [27] نیز 25درصد افزایش هدایت را در سوسپانسیون 8/0 درصد حجمی در آب گزارش کرده است. اسیل [23] بیشترین افزایش را 38 درصد برای سوسپانسیون شش درصد حجمی در آب گزارش کرده است.
ون و دینگ افزایش سریع هدایت در غلظتهای حدود 2/0 درصد حجمی را گزارش کرده و نشان داده است که این افزایش از آن به بعد تقریباً ثابت میماند. در تمامی گزارشها افزایش هدایت با دما مشاهده شده؛ هر چند برای دماهای بالاتر از 30 درجه سانتیگراد این افزایش تقریباً متوقف میشود.

ضریب انتقال حرارت جابجایی آزاد علاوه بر اینکه به هدایت حرارتی بستگی دارد، به خواص دیگری مانند گرمای ویژه، دانسیته و ویسکوزیته دینامیک نیز وابسته است که البته در این درصدهای حجمی پایین همانطور که انتظار میرفت و مشاهده شد، گرمای ویژه و دانسیته بسیار به سیال پایه نزدیک است [33]. ونگ [34] ویسکوزیته آلومینا- آب را اندازه گرفت و نشان داد که هر چه ذرات بهتر و بیشتر پراکنده شوند ویسکوزیته پایینتری را مشاهده میکنیم. وی افزایش 30 درصدی در ویسکوزیته را برای سوسپانسیون سه درصد حجمی گزارش کرد که در مقایسه با نتیجه پکرچو [35] سه برابر بیشتر به نظر میرسد که نشاندهنده وابستگی ویکسوزیته به روش تهیه نانوسیال است. ژوانولی [32] ضریب اصطکاک را برای نانوسیال حاوی یک تا دو درصد ذرات مس به دست آورد و نشان دادکه این ضریب تقریباً مشابه سیال پایه آب است. ایستمن [36] نشان داد که ضریب انتقال حرارت جابهجایی اجباری سوسپانسیون 9/0 درصد حجمی از نانوذرات اکسید مس، 15 درصد بیشتر از سیال پایه است.

-
شکل 4. پیش بینی هدایت حرارتی کامپوزیت ها ( نرمال شده بر اساس هدایت ماتریکس) به عنوان تابعی از جزء حجمی پر کننده. مربع توپر: ذرات با توزیع مناسب، دایره: خوشه های ذرات متراکم ( با 60 درصد حجمی) و مربع: خوشه های با تراکم کمتر ( با 40 درصد حجمی از نانو ذرات).
ژوان ولی [32] ضریب انتقال حرارت جابهجایی اجباری در جریان آشفته را نیز اندازه گرفتند و نشان دادند که مقدار کمی از نانوذرات مس در آب دیونیزه شده، ضریب انتقال حرارت را به صورت قابل توجهی افزایش میدهد، به طور مثال افزودن دو درصد حجمی از نانوذرات مس به آب، حدود 39 درصد انتقال حرارت آن را افزایش میدهد. در حالی که در تناقض با نتایج بالا، پکوچو [35] کاهش 12درصدی ضریب انتقال حرارت را در سوسپانسیون حاوی سه درصد حجمی از آلومینا و تیتانا در همان شرایط مشاهده کردند. پوترا [28] با کار روی جابجائی آزاد، بر خلاف هدایت و جابهجایی اجباری، کاهش انتقال حرارت را مشاهده کرد. داس با [17] انجام آزمایشهای جوشش روی آلومینا- آب نشان داد که با افزایش درصد حجمی نانوذرات، بازدهی جوشش نسبت به سیال پایه کم میشود. وی این کاهش را به تغییر خواص سطحی بویلر به علت تهنشینی نانوذرات روی سطح ناهموار آن نسبت داد، نه به تغییر خواص سیال. یو [6] با اندازهگیری فلاکس حرارتی بحرانی برای جوشش روی سطوح تخت و مربعی مس که در نانوسیال آب- آلومینا غوطهور بودند، نشان داد که فلاکس حرارتی این سیالات سه برابر آب است و اندازه متوسط حباب، افزایش و فرکانس تولید آنها کاهش مییابد. این نتایج را واسالو [7] نیز تأیید کرد. وی روی نانوسیال آب - سیلیکا کار میکرد و افزایش فلاکس حرارت بحرانی را برای غلظتهای کمتر از یکهزارم درصد حجمی گزارش کرد. هنوز مدلی برای پیشبینی این افزایشها و فاکتورهای مؤثر بر آن وجود ندارد
اگر از تأثیرات سطح مشترک نانوذرات کروی صرفنظر شود، در مقادیر بسیار اندک نانوذرات [ f = جزء حجمی نانوذرات] همه مدلهای منتج از تئوری متوسط مؤثر، حل یکسانی دارند. در مواردی که نانوذرات دارای هدایت حرارتی بالایی باشد پیشبینی میشود که افزایش هدایت حرارتی نانوسیال3× f خواهد شد که این پیشبینی، تخمین خوبی برای مواردی است که هدایت ذرات، بیشتر از 20 برابر هدایت حرارتی سیال باشد [39]. همانطور که در شکل (2) نشان داده شده بسیاری از تحقیقات تطابق خوبی با این پیشبینی دارد، از جمله میتوان به تحقیقات زیر اشاره کرد: نانوسیال کاربید سیلیکون با اندازه 26 نانومتر و نانوسیال آلومینا- آب و آلومینا- اتیلن گلیکول [10].
مقاومت سطح مشترک نانوذرت و سیال اطراف آن پیشبینی این تئوری را کاهش میدهد؛ البته هر چه ذرات ریزتر باشند این مقاومت کاهش پیدا میکند. در غلظتهای بالای نانوذرات [شکل 1. وسط] اگر تودههای نانوذره کوچک باشد، تئوری متوسط مؤثر خوب جواب میدهد؛ زیرا توده نانوذرات فضای بیشتری نسبت به نانوذرات منفرد اشغال میکند و بنابراین جزء حجمی توده بیشتر از نانوذرات منفرد است. [40] در تودههای متراکم نانوذرات، دانسیته نسبی تقریباً 0 6 درصد است و در مواردی که تودهها از نظر وضعیت ساختمانی بازتر باشد، افزایش بیشتری را مشاهده میکنیم [ شکل 4] که نتایج آزمایشی نیز همین را نشان میدهد [20]؛ البته هدایت حرارتی نانوذرات تودهای، کوچکتر از ذرات منفرد است؛ البته عامل مهمی در مقابل هدایت حرارتی بالای نانوذرات نیست.
6. چشمانداز
در ده سال گذشته، خواص جالبی برای نانوسیالات گزارش شده است که در این میان، هدایت حرارتی بیشترین توجه را به خود جلب کرده است؛ ولی اخیراً خواص حرارتی دیگری نیز مورد پژوهش قرار گرفته است.
نانوسیالات را میتوان در زمینههای مختلفی به کاربرد، اما این کار با موانعی روبهرو است، از جمله اینکه درباره نانوسیال چند نکته باید بیشتر مورد توجه قرار گیرد:
• تطابق نداشتن نتایج تجربی در آزمایشگاههای مختلف؛
• ضعف در تعیین مشخصات سوسپانسیون نانوذرات؛
• نبود مدلها و تئوریهای مناسب برای بررسی تغییر خواص نانوسیال.
نکات برگزیدهخواص استثنایی نانوسیالات شامل هدایت حرارتی بیشتر نسبت به سوسپانسیونهای معمولی، رابطة غیرخطی بین هدایت و غلظت مواد جامد و بستگی شدید هدایت به دما و افزایش شدید فلاکس حرارتی در منطقة جوشش است.
خواص استثنایی، به همراه پایداری، روش تهیة نسبتاً آسان و ویسکوزیتة قابل قبول باعث شده تا نانوسیالات به عنوان یکی از مناسبترین و قویترین انتخابها در زمینة سیالات خنک کننده مطرح شوند.
مقدار کمی (حدود یک درصد حجمی) از نانوذرات مس یا نانولولههای کربنی در اتیلن گلیکول یا روغن به ترتیب افزایش 40 و 150 درصدی در هدایت حرارتی این سیالات ایجاد میکند.